Convert weightedAdj into 3D binary array scanList objects Back-transform weightedAdjinto the scanList it was summed from (see sum_scans())

weightedAdj2scanList(sum)

Arguments

sum

a weightedAdj object

Value

scanList object. See simunet()

Examples

set.seed(42) n <- 5L samp.effort <- 100L # Adjacency matrix import ## random directed adjacency matrix Adj <- sample(1:samp.effort,n * n) |> matrix(nrow = 5,dimnames = list(letters[1:n],letters[1:n])) Adj[lower.tri(Adj,diag = TRUE)] <- 0L Adj
#> a b c d e #> a 0 100 37 27 58 #> b 0 0 20 36 42 #> c 0 0 0 5 93 #> d 0 0 0 0 30 #> e 0 0 0 0 0
sL <- simunet(Adj,samp.effort,"upper",10) wAdj <- sL |> sum_scans() wAdj
#> #> Weighted adjacency matrix #> a . 10 4 2 6 #> b . . 1 2 7 #> c . . . . 9 #> d . . . . 2 #> e . . . . . #> #> #> Hidden attributes: #> scanList.type - raw.scanList - Adj - samp.effort - n.scans - mode #> Adj.subfun - edge.Prob - summed.scanList - sampled
wAdj |> weightedAdj2scanList()
#> #> scan: 1 #> a . 1 1 . 1 #> b . . . . . #> c . . . . 1 #> d . . . . . #> e . . . . . #> #> scan: 2 #> a . 1 . . . #> b . . . . 1 #> c . . . . 1 #> d . . . . . #> e . . . . . #> #> ... ( 7 more scans) #> #> scan: 10 #> a . 1 . 1 1 #> b . . . . . #> c . . . . 1 #> d . . . . . #> e . . . . . #> #> #> Hidden attributes: #> scanList.type - raw.scanList - Adj - samp.effort - n.scans - mode #> Adj.subfun - edge.Prob
identical(wAdj |> weightedAdj2scanList(),sL)
#> [1] TRUE